
Tracelets and Tracelet Analysis
Of Compositional Rewriting Systems
Nicolas Behr

Université de Paris, IRIF, CNRS, F-75013 Paris, France

Taking advantage of a recently discovered associativity property of rule
compositions, we extend the classical concurrency theory for rewriting sys-
tems over adhesive categories. We introduce the notion of tracelets, which
are de�ned as minimal derivation traces that universally encode sequential
compositions of rewriting rules. Tracelets are compositional, capture the
causality of equivalence classes of traditional derivation traces, and intrin-
sically suggest a clean mathematical framework for the de�nition of various
notions of abstractions of traces. We illustrate these features by introducing
a �rst prototype for a framework of tracelet analysis, which as a key ap-
plication permits to formulate a �rst-of-its-kind algorithm for the static
generation of minimal derivation traces with prescribed terminal events.

1 Motivation and relation to previous works

The analysis of realistic models of complex chemical reaction systems in organic
chemistry and in systems biology poses considerable challenges, both in theory and
in terms of algorithmic implementations. Two major classes of successful approaches
include chemical graph rewriting [2, 6, 15, 20], and the rule-based modeling frameworks
Kappa [27–31] and BioNetGen [21, 45], respectively. These approaches utilize well-
establishedmodern variants of Double-Pushout (DPO) [37, 39] and Sesqui-Pushout (SqPO)
[26] rewriting frameworks over suitably chosen adhesive categories [47] (and with
additional constraints [39, 44] on objects and transitions for consistency). The sheer
complexity of the spaces of distinct classes of objects and of active transitions thereof
necessitated the development of specialized and highly optimized variants of static
analysis techniques for these types of systems. As we will demonstrate in this paper, a
novel class of such techniques is found to arise from a refocusing of the analysis from
derivation traces to so-called tracelets.
To provide some context, we brie�y recall some basic notions of rewriting based
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upon a �nitary adhesive category C [47], such as e.g. the category FinGraph of �nite
directed multigraphs. Objects of this category provide the possible con�gurations or
states of the rewriting system (typically considered up to isomorphism), while partial
maps between objects (encoded as spans of monomorphisms) will provide the possible
transitions, referred to as (linear) rules. The application of a rule O r

↼− I to some object
X then requires the choice of an instance of a subobject I within X, established via
a monomorphism m : I ↪→ X called a match, followed by replacing m(I) ⊂ X with
an instance m∗(O) of O, where the precise details depend on the chosen rewriting
semantics (i.e. Double-Pushout (DPO) [37, 39] or Sesqui-Pushout (SqPO) [26] semantics).
This process of rule application is traditionally referred to as a (direct) derivation. The
central structure studied in the concurrency theory and static analysis of the rewriting
system consists in so-called derivation traces:

On In O2 I2 O1 I1

Xn Xn−1 · · · X2 X1 X0

m∗
n

rn

mn m∗
2

r2

m2 m∗
1

r1

m1

rn,mn r2,m2 r1,m1

(1)

Each transition in such a derivation trace from a state Xi to a state Xi+1 is thus given
by a direct derivation via a linear rule ri at a match mi. A typical abstract encoding
of rewriting systems is then provided in the form of a rewriting grammar, whose data
consists of an initial stateX0 and a set of linear rewriting rules, from which all possible
derivation traces starting at X0 are constructed.
Static analysis of rewriting systems is traditionally based upon several notions of

abstractions of derivation traces. At a fundamental level, the category-theoretical def-
initions of rewriting are inherently invariant under various types of isomorphisms,
which suggests a form of equivalence on derivation traces induced by isomorphisms
referred to as abstraction equivalence [25]. The second major source of equivalences
is based upon so-called sequential independence of derivations [14, 26, 37, 39]: again
leaving technicalities aside, if two “adjacent” direct derivations Xi+1 ri+1, mi+1 Xi and
Xi

ri, mi Xi−1 in a given derivation trace are sequentially independent, there exist
matches m′i and m′i+1 so that Xi+1 ri, m

i′ Xi and Xi
ri+1, m′

i+1 Xi−1 constitute sequen-
tial derivations in the opposite order of application. Lifting this notion to sequences of
an arbitrary �nite number of consecutive derivations yields an abstraction equivalence
called shift equivalence [36, 37, 46]. Quotienting a given grammar by a combination
of abstraction and shift equivalence leads to the sophisticated frameworks of occur-
rence grammars [7, 9] as well as (equivalently [10, 12, 13]) of processes and unfold-
ings [8, 11, 14]. Quintessentially, since sequential commutativity induces a preorder on
derivations of a grammar, the aforementioned well-established static analysis tech-
niques encode the causal relationships of derivations according to this preorder.
Of particular interest in view of practical applications of such techniques to chem-

ical and biochemical reaction systems (via chemical graph rewriting [2, 6, 15, 20], and
via the rule-based modeling frameworks Kappa [27–31] and BioNetGen [21, 45]) are
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concepts that permit to extract high-level information on the causal properties of the
typically immensely complex transition sets and state spaces encountered in real-life
reaction systems in an automated fashion. In the setting of systems chemistry, taking
full advantage of the highly constrained type of rewriting relevant to model molecules
and possible reactions (i.e. a �avor of DPO rewriting in which vertices modeling atoms
are preserved throughout transitions), a highly e�cient analysis technique based upon
mapping of reaction networks into multi-hypergraphs and modeling pathways as in-
teger hyper�ows has been developed in [3, 5, 40]. An essential role in this framework
is played by compositions of chemical graph rewriting rules [1, 4, 6], which have been
implemented algorithmically in [2]. The tracelets as introduced in this paper may be
seen as a formalization of these ideas of understanding pathways as particular rule
compositions, which in particular answers an open question on the associativity of
compositions of such pathways to the a�rmative.
In the biochemistry setting, important developments include sophisticated special-

izations of the aforementioned static analysis techniques for general rewriting systems
to the relevant setting of site-graph rewriting in order to extract information on cellu-
lar signaling pathways [30, 31, 33], the notion of re�nements [32], techniques of model
reduction based on the di�erential semantics of the stochastic transition systems [34]
and notions of trace compression [35]. In particular, so-called strong compression as
introduced in [35] will play an interesting role also in our tracelet framework. While
the theory of static analysis of such complex rewriting systems is thus rather well-
developed, several open problems remain. Referring to [23] for a recent review, at
present the established approach to the generation of pathways for biochemical re-
action systems passes through extensive simulation runs in order to generate large
ensembles of derivation traces of the given system, which then have to be curated and
suitably compressed in order to extract the static information constituting the path-
ways of interest. This dependence on a posteriori analyses of derivation traces hinders
the e�ciency of the algorithms considerably, since typically only a small portion of
the information contained in a given trace gives rise to useful information on path-
ways. We will develop in the following an alternative approach to the static analysis
of rewriting systems that aims to avoid precisely this bottleneck in the synthesis of
pathways.
The main contribution of this paper consists in an alternative paradigm for the

static analysis of rewriting systems, which emphasizes the notion of sequential rule
compositions over that of derivation traces. Our development hinges on two central
theorems of rewriting theory: a theorem describing the relationship between two-step
sequences of direct derivations and the underlying rule compositions, the so-called
concurrency theorem (well-known in the DPO setting [36, 37, 39], only recently estab-
lished in the SqPO setting [16, 17]), and an equally recently proved [16–19] theorem
establishing a form of associativity of the operation of rule compositions. The com-
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bination of these two results admits to characterize derivation traces universally via
so-called tracelets, in the sense that each trace of length n applied to an initial object
X0 may be obtained as the extension of a minimal derivation trace of length n into
the context of the object X0. Referring to Figure 2 for an overview, one may shift
focus onto the tracelets themselves as the objects to analyze in a given rewriting sys-
tem, since they encode all relevant information in terms of the causality of derivation
traces. From a technical perspective, since a tracelet is nothing but a special type
of derivation trace, all of the traditional analysis techniques on derivation traces re-
main applicable. At the same time, tracelets may be naturally equipped with a notion
of associative composition, which opens novel possibilities in view of static pathway
generation in the aforementioned (bio-) chemical rewriting system settings.
Plan of the paper: In Section 2, the core tracelet formalism is established, providing

the precise de�nitions of the concepts summarized in the schematic Figure 2. Section 3
is devoted to developing tracelet analysis, based in part upon the aforementioned static
analysis techniques for derivation traces. As a �rst application of our framework, we
present a prototypical Feature-driven Explanatory Tracelet Analysis (FETA) algorithm in
Section 4. Since our framework is heavily based upon our very recent developments
in the �eld of compositional rewriting, we provide a technical appendix containing a
collection of illustrative �gures and of requisite technical de�nitions and results.

2 Tracelets for compositional rewriting theories

Assumption 1 Throughout this paper, we �x1 a categoryC that satis�es:
• C is adhesive [47]
• C possesses an epi-mono-factorization [44] (i.e. every morphism f ∈ mor(C) can be
factorized into the form f = m ◦ e, withm ∈ mono(C) and e ∈ epi(C))

• C possesses a strict initial object ∅ ∈ obj(C) [47] (i.e. an object such that for every X ∈
obj(C), there exists a unique monomorphism ∅ → X, and for every Y ∈ obj(C), if there
exists a morphism Z → ∅, then it is an isomorphism).

• C is �nitary, i.e. for every object X ∈ obj(C), there exist only �nitely many monomor-
phisms Z → X intoX (and thus only �nitely many subobjects ofX).

Categories satisfying Assumption 1 have a number of properties that are of particu-
lar importance in view of compositionality of rewriting rules (cf. Appendix A.1). A

1Although especially in the DPO-type rewriting case more general settings would be admissible while retaining
compositionality of the rewriting (see [17] for further details), the present choice covers many cases of interest, is
a sufficient setting also for compositional Sesqui-Pushout (SqPO) rewriting, and overall strikes a good balance of
generality vs. simplicity.

4



prototypical example of a category satisfying all of the assumptions above is the �ni-
tary restriction FinGraph of the category of directed multigraphs Graph [24]. We collect
in Appendix A the necessary background material on compositional DPO- and SqPO-
type rewriting for rules with conditions [16–19], and will freely employ the standard
notations therein.
De�nition 1 (Tracelets) Let T ∈ {DPO,SqPO} be the type of rewriting, and let Lin(C) de-
note the set of linear rules with conditions overC (cf. De�nition 14).
• Tracelets of length 1: the set T T

1 of type T tracelets T (R) of length 1 is de�ned as

T T
1 :=

T (R) =
O I cI

O I cI

r

T

∣∣∣∣∣∣∣∣R = (r, cI) ∈ Lin(C)

 . (2)

• Tracelets of length n + 1: given tracelets Tn+1 ∈ T T
1 of length 1 and Tn···1 ∈ T T

n of length
n (for n ≥ 1), we de�ne a span of monomorphisms µ = (In+1 ←↩ M ↪→ On···1) as T-
admissible, denoted µ ∈ MTT

T1(Tn···1), if the following diagram is constructible:
On+1 In+1 cIn+1 On In cIn

O1 I1 cI1

On+1 In+1 M On···1 Y
(n)

n,n−1 · · · Y
(n)

2,1 In···1 cIn···1

O(n+1)···1 Y
(n+1)

n+1,n Y
(n+1)

n,n−1 · · · Y
(n+1)

2,1 I(n+1)···1 cI(n+1)···1

rn+1 rn r1

T T T

T PO DPO† DPO†

(3)

Here, the square marked PO is constructed as a pushout, followed by performing the T-
andDPO†-type direct derivations as indicated to form the lower part of the diagram. The
latter operation may fail, either by non-existence of the requisite pushout complements
(cf. De�nition 12), or, if all POCs exist, because the tentative composite condition cI(n+1)···1

might evaluate to false, with computed as cI(n+1)···1

cI(n+1)··· := Shift(In···1 ↪→ I(n+1)···1, cIn···1)∧
Trans(Y (n+1)

n+1,n ⇐ I(n+1)···1,Shift(In+1 ↪→ Y
(n+1)
n+1,n , cIn+1)) .

(4)

If µ ∈ MTT
T1(Tn···1), we de�ne a tracelet Tn+1

µ∠TTn···1 of length n+ 1 as

Tn+1
µ∠TTn···1 :=

On+1 In+1 cIn+1 On In cIn
O1 I1 cI1

O(n+1)···1 Y
(n+1)

n+1,n Y
(n+1)

n,n−1 · · · Y
(n+1)

2,1 I(n+1)···1 cI(n+1)···1

rn+1 rn r1

T T T

(5)
We de�ne the set T T

n+1 of type T tracelets of length n+ 1 as
T T
n+1 := {Tn+1

µ∠TTn···1|Tn+1 ∈ T T
1 , Tn···1 ∈ T T

n , µ ∈ MTT
T1(Tn···1)

}
. (6)

For later convenience, we introduce the tracelet evaluation operation [[.]],
[[.]] : T T → Lin(C) : T T

n 3 T 7→ [[T ]] := ((On···1 ↼ In···1), cIn···1) , (7)
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with T T :=
⋃
n≥1 T T

n , and where (On···1 ↼ In···1) denotes the span composition (cf. (3))
(On···1 ↼ In···1) := (On···1 ⇐ Y

(n)
n,n−1) ◦ · · · ◦ (Y (n)

2,1 ⇐ In···1) . (8)

A �rst example of a tracelet of length 3 generated iteratively from tracelets of length
1 is given in Figure 1c, with the relevant computation presented in (the top half of)
Figure 1b. The example illustrates a sequential composition of graph rewriting rules,
with vertex symbols and edge colors used purely to encode the structure of the vari-
ous morphisms and rules, i.e. repeated symbols mark objects identi�ed by the partial
morphisms. Note that since in this example no vertices are deleted without explicitly
deleting the incident edges, too, this example constitutes a valid composition in both
the DPO- and the SqPO-type frameworks.
Another very important aspect visualized in Figure 1b is the associativity property of

the underlying rule compositions: the top half of the �gure represents a composition
of r2 with r1 (yielding the tracelet of length 2 highlighted in blue), followed by a fur-
ther composition of r3 with the composite of r2 and r1. By the associativity theorem
for compositional rewriting theories (Theorem 6), there exist suitable overlaps such
that the outcome of the aforementioned operation may be equivalently obtained by
composing r3 with r2 (yielding the tracelet of length 2 highlighted in yellow), and by
pre-composing the composite with r1. Vertically composing squares in each half of
Figure 1b, one may verify that this associativity property on rule compositions extends
to an associativity property on tracelet compositions, as both halves of the �gure yield
the same tracelet of length 3. These observations motivate the following extension of
the de�nition of ..∠T.:
De�nition 2 (Tracelet composition) For tracelets T ′, T ∈ T T of lengths m and n, respec-
tively, a span of monomorphisms µ = (I ′m···1 ←↩ M ↪→ On···1) is de�ned to be an admissible
match of T into T ′, denotedµ ∈ MTT

T ′(T ), if (i) all requisite pushout complements exist to form
the type DPO† derivations (in the sense of rules without conditions) to construct the diagram
in (9a) below, where p := m+ n+ 1,

O′m I ′m cI′m O′1 I ′1 cI′1
On In cIn

O1 I1 cI1

O′m···1 Y
(m)

m,m−1 · · · Y
(m)

2,1 I ′m···1

cI′m···1

M

On···1 Y
(n)

n,n−1 · · · Y
(n)

2,1 In···1 cIn···1

Op···1 Y
(p)

p,p−1 · · · Y
(p)

n+2,n+1 Y
(p)

n+1,n Y
(p)

n,n−1 · · · Y
(p)

2,1 Ip···1 cIp···1

r′m r′1 rn r1

T T T T

T T
PO

DPO† DPO†

(9a)

and if (ii) the condition cI(m+n+1)···1 as in (9b) below does not evaluate to false:
cI(m+n+1)··· := Shift(In···1 ↪→ I(m+n+1)···1, cIn···1)∧

Trans(Y (m+n+1)
n+1,n ⇐ I(m+n+1)···1,Shift(Im···1 ↪→ Y

(n+1)
n+1,n , cIm···1)) .

(9b)
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Then for µ ∈ MTT
T ′(T ), we de�ne the type T tracelet composition of T ′ with T along µ as

T ′µ∠TT :=
O′m I ′m cI′m O1 I1 cI1

Op···1 Y
(p)

p,p−1 · · · Y
(p)

2,1 Ip···1 cIp···1

r′m r1

T T . (10)

Next, the precise relationship between T-type rule and tracelet compositions is
clari�ed.
Theorem 1 Let ../T. denote the T-type rule composition (De�nition 14), and let the set of T-
admissible matches be denoted byMT

r2(r1) (for r2, r1 ∈ Lin(C)).
(i) For all T ′, T ∈ T T,MTT

T ′(T ) = MT
[[T ′]]([[T ]]).

(ii) For all T ′, T ∈ T T and µ ∈ MTT
T ′(T ), [[T ′µ∠TT ]] = [[T ′]]µ/T[[T ]].

(iii) The T-type tracelet composition is associative, i.e. for any three tracelets T1, T2, T3 ∈ T T,
there exists a bijectionϕ : S3(21)

∼=−→ S(32)1 between the sets pairs of T-admissiblematches
of tracelets (with Tji := Tj

µji∠TTi and using property (i))
S3(21) := {(µ21, µ3(21))|µ21 ∈ MT

[[T2]]([[T1]]) , µ3(21) ∈ MT
[[T3]]([[T21]])

S(32)1 := {(µ32, µ(32)1)|µ32 ∈ MT
[[T3]]([[T2]]) , µ(32)1 ∈ MT

[[T32]]([[T1]])}
(11)

such that for all (µ′32, µ
′
(32)1) = ϕ((µ21, µ3(21)))

T3
µ3(21)∠T (T2

µ21∠TT1) ∼=
(
T3
µ′32∠TT2

)
µ′(32)1∠TT3 . (12)

Moreover, the bijection ϕ coincides with the corresponding bijection provided in the as-
sociativity theorem for T-type rule compositions (Theorem 6). (Proof: Appendix A.7)

Finally, combining the associativity results for rule and tracelet compositions with
the so-called concurrency theorems for compositional rewriting theories, we �nd a
characterization of derivation traces via tracelets and vice versa:
Theorem 2 (Tracelet characterization) For all type-T tracelets T ∈ T T

n of length n, for all
objects X0 of C, and for all monomorphisms (m : In···1 ↪→ X0) such thatm ∈ MT

[[T ]](X0), there
exists a type-T direct derivationD = Tm(X0) obtained via vertically composing the squares in
each column of the diagram below:

On In cIn
O1 I1 cI1

On···1 Y
(n)

n,n−1 · · · Y
(n)

2,1 In···1 cIn···1

Xn Xn−1 · · · X1 X0

rn r1

T T

T T

!

On In cIn O1 I1 cI1

Xn Xn−1 · · · X1 X0

rn r1

T T (13)

Conversely, every T-direct derivationD of length n along rules Rj = (rj , cIj
) ∈ Lin(C) starting

at an object X0 of C may be cast into the form D = Tm(X0) for some tracelet T of length n
and a T-admissiblematchm ∈ MT

[[T ]](X0) that are uniquely determined fromD (up to isomor-
phisms). (Proof: Appendix A.8)
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3 Tracelet Analysis

Let us �rst introduce a convenient shorthand notation for tracelets, which emphasizes
that by de�nition, every tracelet is a type of commutative diagram of consecutive direct
derivations “glued” at common interface objects (compare Figure 2a):
De�nition 3 For a tracelet T ∈ T T

n of length n ≥ 1, let symbols tj for 1 ≤ j ≤ n denote j-th
subtracelets of T , so that T ≡ tn|tn−1| . . . |t1 is a concatenation of its subtracelets, with

tj :=
Oj Ij cIj

Y
(n)
j+1,j Y

(n)
j,j−1

rj

T , Y
(n)
n+1,n := On···1 , Y

(n)
1,0 := In···1 . (14)

Based upon the concurrency theorem for compositional rewriting theories (Theo-
rem 5), one may de�ne an operation that provides the starting point of our tracelet
analysis framework:
Corollary 1 (Tracelet surgery) LetT ∈ T T

n aT-type tracelet of lengthn, so thatT ≡ tn| . . . |t1.
Then for any consecutive subtracelets tj |tj−1 in T , onemay uniquely (up to isomorphisms) con-
struct a diagram t(j|j−1) and a tracelet T(j|j−1) of length 2 as follows:

Oj Ij

cIj

Oj−1 Ij−1

cIj−1

Y
(n)

j+1,j Y
(n)

j,j−1 Y
(n)

j−1,j−2

rj rj−1

T T
 

Oj Ij

cIj M

Oj−1 Ij−1

cIj−1

Oj|j−1 Y
(2)

j,j−1 Ij|j−1 cIj|j−1

Y
(n)

j+1,j Y
(n)

j,j−1 Y
(n)

j−1,j−2

rj rj−1

PO
T DPO†

T T

(15a)

t(j|j−1) :=
Oj|j−1 Ij|j−1 cIj|j−1

Y
(n)
j+1,j Y

(n)
j−1,j−2

T , T(j|j−1) := T (rj , cIj )µ∠TT (rj−1, cIj−1) (15b)

Here, µ = (Ij ←↩ M ↪→ Oj−1) is the span of monomorphisms obtained by taking the pullback of
the cospan (Ij ↪→ Y

(n)
j,j−1 ←↩ Oj−1), and this µ is always a T-admissible match. By associativity

of the tracelet composition, this extends to consecutive sequences tj | . . . |tj−k of subtracelets in
T inducing diagrams t(j|...|j−k) and tracelets of length 1 T(j|...|j−k), where for k = 0, t(j) = tj and
T(j) = T (rj , cIj

).
Proof: The proof follows by invoking Theorem 2 in order to convert the derivation
trace encoded in a given the subdiagram tj | . . . |tj−k into the application of a tracelet
T(j|...|j−k) of length k onto the initial object Y (n)

j−k,j−k−1. �

It is via these tracelet surgery operations that we may lift the theory of static anal-
ysis of derivation traces to our alternative setting of tracelets. We de�ne in the fol-
lowing two notions of equivalence that have analogues also in the traditional theory
of rewriting systems.
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De�nition 4 (Tracelet abstraction equivalence) Two tracelets T, T ′ ∈ T T
n of the same

length n ≥ 1 are de�ned to be abstraction equivalent, denoted T ≡A T ′, if there exist suitable
isomorphisms on the objects in T in order to transform T into T ′ (with transformations on
morphisms induced by object isomorphisms).
Due to the intrinsic invariance of all category-theoretical constructions pertaining
to rewriting rules as well as tracelets up to universal isomorphisms, it is clear that
abstraction equivalence is a very natural2, or even essential type of equivalence.
De�nition 5 (Tracelet shift equivalence) Let T, T ′ ∈ T T

n be two tracelets of the same
length n ≥ 1. If there exist subtracelets tj | . . . |tj−k and t′j | . . . |t′j−k such that
(i) the subtracelets have the same rule content (up to isomorphisms), i.e. there exists a per-
mutation σ ∈ Sk such that [[T(p)]] ∼= [[T ′(σ(p)]] for all j − k ≤ p ≤ j, and

(ii) the diagrams t1| . . . |t(j|...|j−k)| . . . |tn and t′1| . . . |t′(j|...|j−k)| . . . |t′n are isomorphic,
then T and T ′ are de�ned to be shift equivalent, denoted T ≡S T ′. Extending ≡S by tran-

sitivity then yields an equivalence relation on T T
n for every n ≥ 1.

Referring to Appendix B.1 for the precise details, one may for example verify that the
tracelet t3|t2|t1 of length 3 depicted in Fig. 1b is shift equivalent to a tracelet t′2|t′3|t1,
with the order of the applications of the rules r3 and r2 (contained in the yellow box
in Fig. 1b) reversed. Notably, while our de�nition of tracelet abstraction equivalence
follows precisely the same methodology as its analogous notion in rewriting theory,
our de�nition of tracelet shift equivalence is strictly more general than the notion of
shift equivalence in rewriting theories according to the standard literature [36, 37, 46].
More precisely, the latter concept is based upon so-called sequential independence for
derivation sequences [14, 26, 37, 39], which would induce a notion of tracelet shift
equivalence strictly less permissive than our requirements described in De�nition 5. As
this di�erence is of crucial importance to the design of static analysis algorithms, we
provide the precise technical relationship in Theorem 7 of Appendix B for clari�cation.

4 Application: a prototype for a Feature-driven Explanatory Tracelet Anal-

ysis (FETA) algorithm

A major motivation behind the development of the tracelet analysis framework has
been the desire to improve upon (and, to an extent, also formalize) existing static
analysis techniques for rewriting systems in the application areas of bio- and organic

2While we will typically consider tracelets by default only up to abstraction equivalence, the definitions provided
thus far may nevertheless still be interpreted as concrete operations if suitable “standard representatives” are chosen
for pushouts, pullbacks etc. — for instance, an extensive discussion of such an interplay of concrete representatives
vs. universal structures for the special case of graph rewriting systems may be found in [7].
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chemical reaction systems (see also Section 1). An application of our framework to the
static generation of so-called pathways appears to be particularly promising:
De�nition 6 (Pathways (sketch)) Let R = {Rj ∈ Lin(C)}j∈J a (�nite) set of rules with
conditions over C, which model the transitions of a rewriting system. We designate a rule
E ∈ Lin(C) as modeling a “target event”, i.e. E must be the last rule applied in the derivation
traces we will study. Let moreover ≡C be an equivalence relation on derivation traces such as
abstraction or shift equivalences, or combinations thereof. Then the task of pathway gener-
ation or explanatory synthesis for the type-T rewriting system based upon the set of rules
R is de�ned as follows: synthesize themaximally compressed derivation traces ending in an
application of E such that “E cannot occur at an earlier position in a given trace”. Here, com-
pression refers to retaining only the smallest traces in a given ≡C equivalence class, while the
last part of the statement needs to be made precise in a speci�c application (as it depends on
the chosen framework).
A standard approach to this type of task consists in generating a large number of

random generic derivation traces �rst, followed by static analysis type operations per-
formed on these traces in order to extract pathways (see e.g. the recent review [23]).
This type of approach typically su�ers from two disadvantages: (i) depending on the
complexity of the rule set R and of the target event E, it may be di�cult to �nd suit-
able choices of initial objects X0 as an input to the simulation algorithms, and (ii) the
extraction of compressed pathways from typically quite extensive datasets of simu-
lator outputs may be computationally rather intense. We thus propose an alternative
pathway generation approach based upon tracelets, which avoids the �rst problem by
design (since tracelets are composable with themselves and yield the minimal deriva-
tion traces for entire classes of derivations according to Theorem 2).
De�nition 7 (Algorithm 1: FETA) With input data as described in Algorithm 1, let ≡C
be the equivalence relation obtained by conjunction of the tracelet abstraction and tracelet
shift equivalences ≡A and ≡S , respectively. Then for a tracelet T ∈ T T

n+1 of the structure T =
tE |tn| . . . |t1 (for some �nite value n ≥ 0, and with tE containing the ruleE, [[T(E)]] ∼= E), we let
E ≺C T denote the following property: there exist no tracelets T ′ ∈ T T

n+1

tE |tn| . . . |t1 ≡C t′n+1|t′n| . . . |t′1 with [[T ′(k)]] ∼= E for an index k < n+ 1 . (16)

We refer to the set of such tracelets modulo ≡C as the set of strongly compressed pathways.
Since length limitations preclude presenting an application example of realistic

complexity in one of the chemical reactions system frameworks, we will present here
only a �rst proof of concept for an application of the FETA algorithm, which never-
theless illustrates in which sense the above algorithm synthesizes “explanations”.
Example 1 LetC = FinGraphbe the category of �nite directedmultigraphs. For compactness
of graphical illustrations and to enhance intuitions, we will present linear rules r = (O ←↩
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Algorithm 1: Feature-driven Explanatory Tracelet Analysis (FETA)
Data: Nmax ≥ 2 ← maximal length of tracelets to be generated
TE := T (E) ← tracelet of length 1 associated to the rule E
T1 := {T (Rj) | j ∈ J} ← set of tracelets of length 1 associated to the transitions
Result: sets Pi (i = 2, . . . , Nmax) of strongly compressed pathways
begin

P1 := {TE} ← the only pathway of length 1;
for 2 < n ≤ Nmax do

pren := {Pµ∠TT |P ∈ Pn−1, T ∈ T1 , µ ∈ MTT
P (T )

}
;

Pn := {T ′ ∈ pren|E ≺C T ′}�≡C
;

end

end

K ↪→ I) ∈ Lin(FinGraph) in a diagrammatic form, where graphs O and I are depicted to
the left and to the right, respectively, and where dotted lines connecting elements of I with
elements ofO indicate the structure of the partial map encoded in the span r. Let thusR = {r}
be a one-element transition set (for a rule r ∈ Lin(FinGraph) without conditions), and let
e1, e2 ∈ Lin(FinGraph) be two rules modeling alternative target events:

r = , e1 = , e2 = . (17)

If we consider DPO-type rewriting, the FETA algorithm produces the following strongly com-
pressed pathways for n ≥ 2 (with light blue arrows indicating the relative overlap structure
within the tracelets):

Pn = {Sn} , Sn = tE | tr| . . . |tr︸ ︷︷ ︸
(n− 1) times

= . . .

︸ ︷︷ ︸
(n− 1) times

, (18)

while for the target event e2 the algorithmdetects no pathwaysP′n forn ≥ 2. This resultmay in-
deed be interpreted as expressing a high-level causal structure or explanation about this simple
rewriting system. As for e1, the pathways Pn are seen to e�ectively encode those possibilities
of sequential rule compositions that ensure that the edge eventually matched by e1 had not
already been present in any of the �rst n − 2 steps of rule applications. This leaves only the
pathways of type Sn as options, since for any other match of the tracelet TE within a candidate
tracelet T of length n, one �nds a violation of the condition E ≺C T . On the other hand, the
fact that there are no pathways of length n ≥ 2 for the target event encoded by e2 signi�es that
the rule r acting on some initial graphX0 can in fact not generate any occurrences of the shape
of the input of e2 (two edges with a shared vertex pointing towards each other) that had not
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already been present inX0. Note that we have obtained this result statically, andwithout ever
evaluating any concrete direct derivation on initial graphsX0.

5 Conclusion and Outlook

Many of the standard constructions in the concurrency theory and the theory of static
analysis of rewriting systems over adhesive categories are ultimately based upon one of
the central theorems of rewriting theory, which is known �ttingly as the concurrency
theorem [36, 38, 49]. The essential property provided by this theorem is a form of
compatibility between (i) sequential applications of rewriting rules starting at some
initial object X0, and (ii) a one-step application of a composition of the rewriting rules
involved, and with both descriptions in a (constructive) bijective correspondence. As
outlined in Section 1, it is then precisely this correspondence which allows to develop
various abstractions and analysis techniques for derivation traces of a given rewriting
system [7, 8, 11, 12, 14, 35]. However, as has been only very recently discovered [16–
19], both Double-Pushout (DPO) and Sesqui-Pushout (SqPO) rewriting theories over
suitable adhesive categories carry an additional important structure, namely on the
operation of composing rules itself: in a certain sense, rule compositions are associative
(with a concrete example provided in Figure 1).
In this paper, we demonstrate that combining the concurrency with the associativ-

ity theorems, one is naturally led to the concept of tracelets (Section 2), which may be
intuitively understood as a form of minimal derivation traces that generate all deriva-
tions that are based upon the same sequential rule compositions (Theorem 2). Owing
to the associativity theorem for rule compositions, tracelets are on the one hand by
de�nition instances of derivation traces themselves and thus admit all aforementioned
standard static analysis techniques, but importantly in addition a�ord certain univer-
sal properties: an associative notion of composition directly on tracelets, certain types
of “surgery” operations, and �nally various forms of equivalence relations that may
be employed to develop compressions and other abstractions of tracelets (Section 3).
In view of practical applications, we have proposed a �rst prototypical tracelet-

based static analysis algorithm, the so-called Feature-driven Explanatory Tracelet Anal-
ysis (FETA) algorithm (Section 4). As illustrated in Example 1, this algorithm permits
to extract high-level causal information on the “pathways” or minimal derivation
traces that can lead to the ultimate application of the rule that models a target event.
We believe that our methodology may provide a signi�cant contribution to the static
analysis toolset in the �elds of chemical graph transformation systems [2, 6, 15, 20]
and of rule-based modeling approaches to biochemical reaction systems such as the
Kappa [23, 28, 30, 31] and the BioNetGen [21, 45] frameworks.
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A Background material: compositional rewriting theories

For the readers’ convenience, we collect in this section a number of technical results
and details on rewriting theories, most of which is either standard material from the
rewriting theory, or quoted from our recent series of works [16–18].

A.1 Properties of adhesive categories

Theorem 3 ([17]) LetC be a category satisfying Assumption 1. Then the following properties
hold:
(i) C has e�ective unions (compare [47]): given a commutative diagram as in the left of
Fig. 3, if the (b′, c′) is the pullback of the cospan of monomorphisms (b, c) (which by sta-
bility of monos under pullback entails that b′, c′ ∈ mono(C)), and if (e, f) is the pushout
of the span (b′, c′) (with e, f ∈ mono(C) by stability of monos under pushout), then the
morphism dwhich exists by the universal property of pushouts is also a monomorphism.

(ii) properties of �nal pullback complements (FPCs)3 in C (cf. the middle diagram in
Fig. 3): for every pair of composable monomorphisms (c, a), there exists an FPC (d, b),
and moreover b, d ∈ mono(C).

(iii) characterization of epimorphisms via pushouts: given a diagram such as on the right
of Fig. 3, where all morphisms except e are monomorphisms, where the square (1) is a
pushout, e ◦ di = ei for i = 1, 2, and where (b1, b2) is the pullback of (e1, e2). Then the
morphism e is an epimorphism if and only if the exterior square is a pushout.

A.2 Conditions, shift and transport constructions

De�nition 8 (Conditions) Let C be a category satisfying Assumption 1. Then a condition
over an object X ∈ obj(C), denoted cX , is inductively de�ned as follows:
• cX = true is a condition overX .
• For every (a : X → A) ∈ mono(C) and for every condition cA over A ∈ obj(C), ∃(a : X →
A, cA) is a condition overX .

• If cX is a condition overX, so is its negation ¬cX .
• If c(i)

X are conditions overX (for indices i ∈ I), then ∧i∈Ic(i)
X is a condition overX .

A concrete interpretation of conditions is provided by the accompanying de�nition
of satisfaction of conditions.

3Recall e.g. from [26] that for a pair of composable morphisms (c, a) such as in the middle part of Fig. 3, a pair
of composable morphisms (d, b) is an FPC of (c, a) if (a, b) is the pullback of (c, d), and if the following universal
property holds: given a cospan (c, z) such that (x, y) is the pullback of (c, z) and such that there exists a morphism
w satisfying z = a ◦ w, then there exists a unique (up to isomorphism) w∗ such that z = d ◦ w∗.
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(a) Three rules sequentially composed (from right to left): input and output interfaces are drawn explicitly, while the
context graphs Kj are implicitly encoded as subgraphs of Oj and Ij joined by dotted lines (for j = 1, 2, 3). The structure
of the matches of the rules is indicated via lines connecting elements of outputs to elements of inputs of rules.

PO

PO

PO

PO

PO

(b) Explicit demonstration of the associativity property of the rule composition operation: the top half of the diagram
encodes a composition of the shape r3/(r2/r3), while the bottom half encodes (r3/r2)/r1, with both operations for the
overlaps depicted leading to the same minimal trace (up to isomorphisms). The tracelet of length 3 equivalently encoded
by both halves of the diagram is obtained by composition of squares.

PO

PO

PO

PO

PO

(c) The minimal trace of length 3 encoded in Fig. 1b.

Figure 1: Illustration of the relationship between associativity and tracelets.
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(a) Tracelets as (minimal) derivation traces.
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(b) Tracelet generation (Definition 1).
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(c) Tracelet composition (Definition 2).
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(d) Tracelet analysis (Section 3).

Figure 2: Schematic overview of the tracelet and tracelet analysis framework.
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Figure 3: from [17]: Effective unions (left), final pullback complements (FPCs) and their universal property
(middle), and the epimorphism-pushout correspondence (right).
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De�nition 9 (Satisfaction) Let X ∈ obj(C) be an object and cX a condition over X . Then
the satisfaction of cX by a monomorphism (m : X → Y ) ∈ mono(C), denoted m � cX , is
inductively de�ned as follows:
• Every morphism satis�es cX = true.
• For every (a : X → A) ∈ mono(C) and for every condition cA over A ∈ obj(C), the mor-
phism m : X → Y satis�es ∃(a : X → A, cA) if there exists (q : A → Y ) ∈ mono(C) such
thatm = q ◦ a and q � cA.

• m satis�es ¬cX if it does not satisfy cX .
• If c(i)

X are conditions overX (with i ∈ I),m satis�es ∧i∈Ic(i)
X ifm � c(i)

X for all i ∈ I .
The notion of satisfaction of conditions permits to reason on equivalences of con-

ditions:
De�nition 10 (Equivalence) LetX ∈ obj(C) be an object, and let c(1)

X and c(2)
X be two condi-

tions overX . Then the two conditions are equivalent, denoted c(1)
X ≡ c(2)

X , i�
∀(m : X → Y ) ∈ mono(C) : m � c(1)

X ⇔ m � c(2)
X . (19)

Besides the evident equivalences that arise from isomorphisms of rules and ob-
jects, some important classes of equivalences are implemented by the following two
constructions quoted from [17], which are essential in our compositional rewriting
framework (cf. Section A.3).
De�nition 11 (Shift and Transport) LetC be a category satisfying Assumption 1. Then for
every condition cA over A ∈ obj(C) and for every (a1 : A→ B1), the shift of the condition cA
over a1, denoted Shift(a1, cA), is de�ned inductively as follows:
• Shift(a1, true) := true (over B1).
• If cA = ∃(a2 : A→ B2, cB2) for some (a2 : A→ B2) ∈ mono(C), then

Shift(a1 : A→ B1,∃(a2, cB2)) :=
∨

(b1,b2)∈X
∃(e1 : B1 → E,Shift(e2 : B2 → E, cB2)) , (20)

where the set X is the set of all isomorphism classes4 of spans (b1, b2) as in the right part
of Figure 3, where (e1, e2) are constructed as the pushout of (b1, b2).

• Shift(a1,¬cA) := ¬Shift(a1, cA) and Shift(a1,∨i∈Ic(i)
A ) := ∨i∈IShift(a1, c(i)

A ).
4Note that our improvement over the original variant of this construction as presented in [38, 44] consists

in the precise characterization of the contributions to Shift(∃(a2, cB2 )) via constructing pushouts of the possible
spans (b1, b2) (rather than via the original indirect characterization in terms of listing the possible epimorphisms
(e : D → E) ∈ epi(C)), a result which relies on Theorem 3(iii), and which is of central importance to proving the
compositionality and associativity of rules with conditions.
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We also de�ne the operations of transporting a condition cO over the output object O
of a linear rule r = (O ← K → I) ∈ Lin(C) to the input object I of r. The construction is
denoted Trans(r, cO) and is de�ned inductively as follows:
• Trans(r, true) := true (over I).
• If cO = ∃(b : O → B, cB) for some b ∈ mono(C), then if b 6∈ MDP O†

r (B), we de�ne
Trans(r, ∃(b : O → B, cB)) := false (as a condition over I). Otherwise, i.e. if b ∈ MDP O†

r (B),
we let (referring to De�nition 12 for the de�nition ofDPO†)

Trans(r, ∃(b : O → B, cB))
:= ∃(b∗ : I → B′,Trans(B ⇐ B′, cB)

, where O I

B B′

b

r

DPO† b∗ . (21)

• Trans(r,¬cO) := ¬Trans(r, cO) and Trans(r,∨i∈Ic(i)
O ) := ∨i∈ITrans(r, c(i)

O ).
Theorem 4 (Properties of shift and transport constructions [17]; compare [43]) Let
C be a category satisfying Assumption 1.
(i) Shift and satisfaction: for X ∈ obj(C), cX a condition over X and (m : X → Y ) ∈

mono(C), then for monomorphisms (q : Y → Z) ∈ mono(C) it holds that
q � Shift(m : X → Y, cX) ⇔ q ◦m � cX . (22)

(ii) Unit for Shift: for every objectX ∈ obj(C) and for every (X
∼=−→ X ′) ∈ iso(C),

Shift(X
∼=−→ X ′, cX) ≡ cX . (23)

(iii) Compositionality of Shift: given composable monomorphisms (f : X → Y ), (g : Y →
Z) ∈ mono(C) and a condition cX overX,

Shift(g : Y → Z,Shift(f : X → Y, cX)) ≡ Shift(g ◦ f : X → Z, cX) . (24)

(iv) Satis�ability for Trans: for r = (O ← K → I) ∈ Lin(C), cO a condition over O and
X ∈ obj(C), denoting for an admissible match m ∈ MT

r(X) (for T ∈ {DPO,SqPO}) the
comatch form under a T-type rule application bym∗ (cf. (30)),

∀m ∈ MT
r(X) : m � Trans(r, cO)⇔ m∗ � cO . (25)

We write Trans(r, cO) ≡̇T cO to indicate this equivalence up to T-type admissibility.
(v) Units for Trans: for each span of isomorphisms (Z

∼=←− Y
∼=−→ X) ∈ Lin(C) and for each

condition cZ over Z,
Trans((Z

∼=←− Y ∼=−→ X), cX) ≡ cZ . (26)

(vi) Compositionality of Trans: for composable spans s = (E ← D → C), r = (C ← B →
A) ∈ Lin(C) and cE a condition over E,

Trans(s,Trans(r, cE) ≡ Trans(s ◦ r, cE) . (27)
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(vii) Compatibility of Shift with Trans: for r = (O ← K → I) ∈ Lin(C), (m : I → X) ∈
mono(C), cO a condition over O and T ∈ {DPO,SqPO},

m ∈ MT
r(X) ⇒ Shift(m,Trans(r, cO)) ≡̇T Trans((rm(X) T⇐==

r,m
X),Shift(m∗, cO)) . (28)

A.3 Compositional Double- and Sesqui-Pushout rewriting

We present here our recently introduced re�nement of the DPO-type such framework,
as well as the �rst of its kind such framework for compositional SqPO-type rewriting
theories [17]. For the DPO-type case, our developments generalized earlier work by
Habel and Pennemann [44, 48] and by Ehrig and collaborators [38, 42], while the
SqPO-constructions were new.
The core de�nitions of rewriting are the following two sets of de�nitions, which

provide the semantics of rule applications to objects and compositions of linear rules:
De�nition 12 (Rules and rule applications) LetC be a category satisfying Assumption 1.
Denote by Lin(C) the set of isomorphism classes of spans of monomorphisms,

Lin(C) :=
{
O

o←− K i−→ I
∣∣∣ o, i ∈ mono(C)

}
�∼= , (29)

referred to henceforth as the set of linear rules (on C). Here, two rules ri = (Oj ← Kj →
Ij) ∈ Lin(C) (for j = 1, 2) are representatives of the same isomorphism class if there exist
isomorphisms ω : O1 → O2, κ : K1 → K2 and ι : I1 → I2 that make the evident diagram
commute5. Let r = (O ← K → I) ∈ Lin(C) be a linear rule,X ∈ obj(C) an object, and (m : I →
X) ∈ mono(C) be a monomorphism. A rule application of the rule r to the object X along an
admissible match m is de�ned via the following type of commutative diagram (referred to as
a direct derivation in the literature):

O I

rm(X) X

r

T :=
O K I

Y K X

m∗

o i

(B) (A) m . (30)

Here, the precise construction depends on the type T of rewriting:
(i) T = DPO (Double-Pushout (DPO) rewriting): given (m : I → X) ∈ mono(C), m is
de�ned to be an admissible match if the square marked (A) in (30) is constructible as
a pushout complement (POC); in this case, the square marked (B) is constructed as a
pushout (PO).

(ii) T = DPO† (“opposite” of Double-Pushout rewriting): for this auxiliary rewriting
semantics, given (m∗ : O → Y ) ∈ mono(C), m∗ is de�ned to be an admissible match if

5We will henceforth speak about isomorphism classes of rules and objects and their concrete representatives
interchangeably, since all constructions presented afford a clear notion of invariance under isomorphisms. This
feature of the constructions also motivates the notion of abstraction equivalence standard in the rewriting theory
(cf. Section 3).
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the square marked (B) in (30) is constructible as a pushout complement (POC); in this
case, the square marked (A) is constructed as a pushout (PO). Coincidentally, a DPO†-
admissible match m∗ uniquely induces a DPO-admissible match m for r applied to X,
which is whym∗ is sometimes referred to as the comatch of m.

(iii) T = SqPO (Sesqui-Pushout (SqPO) rewriting): given (m : I → X) ∈ mono(C), the
square (A) is constructed as a�nal pullback complement (FPC), followed by construct-
ing (B) as a pushout.

We denote the set of T-admissible matches by MT
r(X). We will moreover adopt the tra-

ditional “direct derivation” notation rm(X) T⇐==
r,m

X for T = DPO or T = SqPO as a compact
notation for the process of applying rule r toX along admissible matchm.
Crucially, linear rules in both types of rewriting semantics admit a composition op-

eration:
De�nition 13 (Rule composition) LetC be a category satisfying Assumption 1. Let r1, r2 ∈
Lin(C) be two linear rules. We de�ne the set of T-type admissible matches of r2 into r1 for
T ∈ {DPO,SqPO}, denotedMT

r2(r1), as
MT
r2(r1) :=

{
µ21 = (I2 ←M21 → O2)

∣∣n1, n2 in PO(µ21) = (I2
n2−→ N21

n1←− O1)

satisfy n2 ∈ MT
r2(N21) ∧ n1 ∈ MDP O†

r1 (N21)
}
.

(31)

For a T-type admissible match µ21 = (I2 ←M21 → O2) ∈ MT
r2(r1), construct the diagram

O2 I2 M21 O1 I1

O21 N21 I21

r2

n2T PO n1 DPO†

r1

. (32)

From this diagram, onemay compute (via pullback composition ◦ of the two composable spans
in the bottom row) a span of monomorphisms (O21 ⇐ I21) ∈ Lin(C), which we de�ne to be the
T-type composition of r2 with r1 along µ21 (for T ∈ {DPO,SqPO} as in (32)):

r2
µ21/Tr1 := (O21 ⇐ I21) = (O21 ⇐ N21) ◦ (N21 ⇐ I21) . (33)

We refer the interested readers to [16, 18] for the precise derivations of these notions
of rule compositions, and note here that the de�nitions are justi�able a posteriori via
the concurrency theorems as presented in Section A.5.
The compositional rewriting framework may be extended to the setting of rules

with conditions as follows6:
De�nition 14 (Rewriting with conditions [17]) Let C be a category satisfying Assump-
tion 1. We denote by Lin(C) the set of linear rules with conditions, de�ned as

Lin(C) := {R = (r, cI) | r = (O ← K → I) ∈ Lin(C)} . (34)

6Referring to [17] for the precise details, based upon the transport construction we may from hereon without loss
of generality consider rewriting rules with conditions over the input objects only.
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We extend the de�nitions of rule applications (De�nition 12) and rule compositions (De�ni-
tion 13) to the setting of rules with conditions as follows: for R = (r, cI) ∈ Lin(C) and X ∈
obj(C), de�ne the sets of T-type admissible matches of R into X (for T ∈ {DPO,SqPO}),
denotedMT

R(X), as
MT
R(X) := {m ∈ MT

r(X) | m � cI} . (35)

Then the T-type rule application of R along m ∈ MT
R(X) to X is de�ned as rm(X) T⇐= X .

As for the rule compositions,wede�ne for two ruleswithapplication conditionsRj = (rj , cIj
) ∈

Lin(C) (j = 1, 2) the sets of T-admissible matches of R2 into R1 as
MT
R2(R1) := {µ21 ∈ MT

r2(r1) | cI21 6≡ false} , (36)

where the condition cI21 for a given rule composite is de�ned as (compare (32) for the de�ning
construction of the various morphisms)

cI21 := Shift(I1 → I21, cI1)
∧

Trans(N21 ← K1 → I21,Shift(I2 → N21, cI2)) . (37)

Then we de�ne for admissible matches µ21 the compositions as
∀µ21 ∈ MT

R2(R1) : R2
µ21/TR1 := (r2

µ21/Tr1, cI21) . (38)

A.4 Auxiliary properties of direct derivations

Lemma 1 LetC be a category satisfying Assumption 1, and let T ∈ {DPO,SqPO,DPO†}.
(i) For every rule R = (r, cI) ∈ Lin(C), the diagram below is a T-type direct derivation for
arbitrary T ∈ {DPO,DPO†, SqPO}:

O K I cI

O K I cI

o i

(1) (2)

 =


O I cI

O I cI

r

T

 . (39)

(ii) Vertical pasting: for T ∈ {DPO,DPO†, SqPO}, and suppose that in the diagrams below
the monomorphism (X ′ ←↩ X) ◦ (X ←↩ I) satis�es the condition cI (not explicitly drawn
for clarity). Then the following properties hold true: composing squares of the underlying
commutative diagrams vertically (indicated by the  notation), one obtains (a) for all
combinations of types of rewriting with T = T′, or (b) for T arbitrary and T = DPO or
T = DPO†, the following T-type direct derivations:

O I

Y X

Y ′ X ′

r

T

T′

 

O I

Y ′ X ′

r

T (40)
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Proof: The �rst statement follows since the squares marked (1) and (2) are pushouts
for arbitrary morphisms o and i. The second property follows by invoking various
elementary square composition lemmata for pushouts and FPCs (see e.g. the list of
technical Lemmas provided in the appendix of [16]). �

A.5 Compositional concurrency

A central role in our rewriting frameworks is played by the notion of certain concur-
rency theorems, which entail an equivalence between (i) sequential applications of
rewriting rules along admissible matches and (ii) application of composites of rewrit-
ing rules along admissible matches. This structure is in turn intimately related to
notions of traces and analyses thereof in rewriting theory. In the form as presented
below (which is compatible with the notion of compositionality of rewriting rules),
both the DPO- and the SqPO-type concurrency theorems were �rst introduced in [17]
(with some earlier results in the DPO-setting under weaker assumptions reported
in [38, 44]).
Theorem 5 (Concurrency theorems [16–18]) LetC be a category satisfying Assumption 1,
and let T ∈ {DPO,SqPO}. Then there exists a bijection ϕ : A

∼=−→ B on pairs of T-admissible
matches between the sets A and B,

A = {(m2,m1) | m1 ∈ MT
R1(X0) , ;m2 ∈ MT

R2(X1)}
∼= B = {(µ21,m21) | µ21 ∈ MT

R2(R1) , m21 ∈ MT
R21(X0)} ,

(41)

whereX1 = R1m1
(X0) andR21 = R2

µ21/TR1 such that for each corresponding pair (m2,m1) ∈ A
and (µ21,m21) ∈ B, it holds that

R21m21
(X0) ∼= R2m2

(R1m1
(X0)) . (42)

Proof: See [17] for the full technical details. Let us note here that the bijective cor-
respondence is constructive, i.e. there exist explicit algorithms for realizing B from A

and vice versa. �

The following technical result is a necessary prerequisite for deriving the proof of
Theorem 2:
Corollary 2 Let rn···1 = (On···1 ⇐ In···1) be a span ofmonomorphisms, and let (Y (n)

j+1,j ⇐ Y
(n)
j,j−1)

be n spans of monomorphisms (for 0 ≤ j ≤ n) with Y (n)
n+1,n = On···1, Y (n)

1,0 = In···1, and such that
(On···1 ⇐ In···1) = (On···1 ⇐ Y

(n)
n,n−1) ◦ . . . ◦ (Y (n)

2,1 ⇐ In···1) .

Let cIn···1 be a condition over In···1. Then for each object X0 and for each T-admissible match
(In···1 ↪→ X0) ∈ MT

Rn···1(X0) (for Rn···1 = (rn···1, cIn···1) and for T ∈ {DPO,SqPO}), the T-type
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application of Rn···1 toX0 along this match
On···1 In···1 cIn···1

Xn X0

T (43a)

uniquely (up to isomorphisms) encodes an n-step T-type derivation sequence of the following
form, and vice versa:

On···1 Y
(n)

n,n−1 · · · Y
(n)

2,1 In···1 cIn···1

Xn Xn−1 · · · X1 X0

T T (43b)

Proof: The statement is trivially true for n = 1. For n = 2, note �rst that for any two composable
spans of monomorphisms S2 = (Z ⇐ Y ) and S1 = (Y ⇐ X), invoking the de�nition of rule
compositions (De�nition 13) allows to verify that considering S2 and S1 as linear rules without
conditions, and letting µ = (Y ←↩ Y ↪→ Y ) be a span of identity morphisms on Y , the span
composition S2 ◦ S1 is in fact computable as a rule composition:

Z Y Y Y X

Z Y X

T PO DPO†  S2 ◦ S1 = S2
µ/TS1 . (44)

Here, according to Lemma 1(i) the T- and DPO†-type direct derivation subdiagrams as in-
dicated always exist. Consequently, the claim of the corollary for n = 2 follows by invoking
the concurrency theorem (Theorem 5) for the special case of r2···1 = (O2···1 ⇐ I2···1), (O2···1 ⇐
I2···1) = (O2···1 ⇐ Y

(2)
2,1 ) ◦ (Y (2)

2,1 ⇐ I2···1) and for µ21 a span of identity morphisms of Y (2)
2,1 . The

proof for the case n ≥ 2may then be obtained via induction over n. �

A.6 Compositional associativity

The second main ingredient of our novel compositional rewriting frameworks is the
notion of associativity. Intuitively, if one wishes to extend the analysis of traces as
suggested via the concurrency theorems to a full-�edged analysis that is centered on
compositions of rewriting rules (which constitutes the main contribution of this paper
in the form of the tracelet framework), one must necessarily have a certain property
ful�lled, in that multiple sequential compositions of rewriting rules may be computed
in any admissible order of pairwise compositions. The latter feature is crucial for
the purposes of analysis of classes of traces, since the traditional interpretation of the
concurrency theoremwould only permit to reason on pairwise sequential compositions
(but not on extension thereof to higher order composites).
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Theorem 6 (Associativity of rule compositions [16–18]) Let C be a category satisfying
Assumption 1. letR1, R2, R3 ∈ Lin(C)be linear ruleswith conditions, and letT ∈ {DPO,SqPO}.
Then there exists a bijection ϕ : A

∼=−→ B of sets of pairs of T-admissible matches A and B,
de�ned as

A := {(µ21, µ3(21)) | µ21 ∈ MT
R2(R1) , µ3(21) ∈ MT

R3(R21)} (R21 = R2
µ21/TR1)

B := {(µ32, µ(32)1) | µ32 ∈ MT
R3(R2) , µ(32)1 ∈ MT

R32(R1)} (R32 = R3
µ32/TR2)

(45)

such that for each corresponding pair (µ21, µ3(21)) ∈ A and ϕ(µ21, µ3(21)) = (µ′32, µ
′
(32)1) ∈ B,

R3
µ3(21)/T (R2

µ21/TR1) ∼=
(
R3

µ′32/TR2

)
µ′(32)1/TR1 . (46)

In this particular sense, the composition operations ../T. are associative.

A.7 Proof of Theorem 1

Ad part (i): Note �rst that by virtue of Corollary 2, the composition of two T-type
tracelets T ′, T ∈ T T of lengths m and n, respectively, along a T-admissible match µ =
(I ′m···1 ←↩ M ↪→ On···1) ∈ MTT

T ′(T ) encodes a T-type composition of linear rules R′m···1 =
(r′m···1, cI′m···1) and Rn···1 = (rn···1, cIn···1) (with r′m···1 = (O′m···1 ⇐ I ′m···1) and rn···1 = (On···1 ⇐
In···1)) of the following form:

O′m···1 I ′m···1

cI′m···1 M

On···1 In···1

cIn···1

Op···1 Y
(p)

n+1,n Ip···1 cIp···1

r′m···1 rn···1

PO
T DPO†

(47)

Consequently, the constructibility of this diagram indeed hinges on whether or not µ
is a T-type admissible match of r′m···1 into rn···1, thus proving the statement of part (i).
Ad part (ii): The latter argument has the additional consequence that for all tracelets
T ′, T ∈ T T and µ ∈ MTT

T ′(T ), equation (47) demonstrates explicitly that [[T ′µ∠TT ]] =
[[T ′]]µ/T[[T ]], thus proving part (ii) of the theorem statement.
Ad part (iii): The proof of part (iii) of Theorem 1 follows by combining the statements
of the �rst two parts with the associativity theorem for T-type rule compositions (The-
orem 6).

A.8 Proof of Theorem 2

The �rst part of the claim follows by applying a corollary of the concurrency theorem
for rules with conditions (Corollary 2 of Appendix A.5) in order to construct the lower
row in the left diagram of (13), followed by vertically composing squares (Lemma 1 of
Appendix A.4) in each column of the diagram in order to obtain the derivation trace
shown on the right of (13). The second part of the statement follows by an inductive
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application of the concurrency theorem: the case n = 1 coincides with the de�nition of
a direct derivation, while for n = 2 Theorem 5 precisely describes the transition from
a length 2 derivation trace to a length 1 derivation trace along the composite rule. The
induction step n → n + 1 is then veri�ed by applying the concurrency theorem to the
derivation trace Xn+1 ⇐ Xn ⇐ X0 along the rules rn+1 and (On...1 ⇐ In...1).

B Compositional sequential independence

A key role in the analysis of rewriting theories is played by the notion of sequential
independence, which we �rst recall in its traditional form as known from the rewriting
literature:
De�nition 15 (cf. e.g. [38], Def. 4.3 (DPO) and [14], Def. 2.15 (SqPO)) Consider a
two-step sequence of rule applications of type T to an initial object X0 ∈ C along admissi-
ble matches,

O2 K2 I2 O1 K1 I1

X2 K ′
2 X1 K ′

1 X0
d∗

2 d2 d∗
1 d1

PO t PO tm∗
2

m2 m∗
1

m1

n2 n1

, (48)

where the squares marked t for T = DPO are pushout complements and for T = SqPO FPCs.
The two rule applications are called sequentially independent if there exist monomorphisms
(n1 : O1 → K ′2), (n2 : I2 → K ′1) ∈ mono(C) such that

d2 ◦ n1 = m∗1 ∧ d∗1 ◦ n2 = m2 . (49)

Based upon the concurrency theorems for the DPO- and SqPO-type compositional
rewriting theories, one may develop the following re�ned variant of the above de�ni-
tion, as was anticipated e.g. in [22] for the DPO-type setting:
Lemma 2 (Compositional sequential independence) In the setting of Def. 15, the rule
applications are sequentially independent if and only if there exist monomorphisms (O1 →
K2), (I2 → K1) ∈ mono(C) such that

(N21 ← K2) ◦ (K2 ← O1) = (N21 ← O1) ∧ (N21 ← K1) ◦ (K1 ← I2) = (N21 ← I2) , (50)

with notations as in the explicit version of diagram (32) (see the proof). For the case of rules
with conditions, it is in addition required that cI21 ≡̇ cI12 .
Proof: For the “⇒” direction, suppose the T-type rule applications are sequentially in-
dependent. Invoking the T-type concurrency theorem, we may construct the following
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diagram:
O2 K2 I2 M21 O1 K1 I1

O21 K2 N21 K1 I21

X2 K ′
2 X1 K ′

1 X0
d∗

2 d2 d∗
1 d1

PO

PO PO

t

t t

POC PO
m∗

2

m2 m∗
1

m1

n2n1

(51)

Here, all arrows are monomorphisms, the squares marked t are pushout complements
in the DPO- and FPCs in the SqPO-type rewriting case, while M21 = PB(I2 → X1 ← O1),
and N21 = PO(I2←M21 →O1). Since pushouts along monomorphisms are pullbacks in
an adhesive category, existence of the morphisms (I2→ N21) and (I2→K ′1) (the latter by
assumption) entails the existence of a morphisms (I2 → K2) such that

(K ′1 ← K1) ◦ (K1 ← I2) = (K ′1←I2) .

By the decomposition property of monomorphisms in an adhesive category, (I2 → K2)
is a monomorphism, too. Analogously, since POCs and FPCs along monomorphisms
are also pullbacks, we may infer the existence of a monomorphism (O1 → K2) such
that

(K ′2 ← K2) ◦ (K2 ← O1) = (K ′2←O1) .

The statement of the “⇐” direction follows by composition of the relevantmonomor-
phisms (to obtain the monomorphisms (I2 → K2) and (O1 → K2)) and by composing PO
and FPC squares (�rst row with the second row) to obtain the claim. Finally, the re-
quirement on the conditions as stated arises from the de�nition of rule compositions,
and is necessary so that the composites of the rules in the two sequential orders can
give rise to an T-admissible match (in the sense of rules with conditions) I21 ↪→ X0. �
The latter result clari�es the precise relationship between compositions and sequential
applications of rules on the one hand and the notion of sequential commutativity on
the other hand: two rules in a sequential rule application are independent if and only if
their underlying concurrent rule composition satis�es a certain property as described
above. In other words, we obtain a sharper notion of sequential independence in the
latter, compositional form, since this notion characterizes sequential commutativity
for an entire class of sequential rule applications (i.e. for all T-type sequential ap-
plications that are equivalent to applications of the T-composite rule r2

µ21/Tr1). This
permits us to provide a re�nement of the notion of switching couples (cf. e.g. [14]) to
the level of rule compositions for rules with conditions, which is the �rst result of this
kind for both DPO- and SqPO-rewriting:
Theorem 7 (Compositional concurrent commutativity) Let C be a category satisfying
Assumption 1, let Rj = (rj , cIj

) ∈ Lin(C) be two rules with conditions, and let µ21 = (I2 ←
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M21 → O1) be a T-admissible match of R2 into R1 (with T ∈ {DPO,SqPO}). Then if there
exist monomorphisms (O1 → K2), (I2 → K1) ∈ mono(C) (with notations as in 2), with

(N21 ← K2) ◦ (K2 ← O1) = (N21 ← O1) ∧ (N21 ← K1) ◦ (K1 ← I2) = (N21 ← I2) , (52)

the following statements hold:
(i) The pullbacks

M21 M ′21

O1 K1

PB

M21 M ′′21

I2 K2

PB (53)

satisfyM ′21
∼= M21 andM ′′21

∼= M21, thus furnishingmonomorphisms (a1 : M21 → K1) and
(a2 : M21 → K2).

(ii) The span µ12 := (I1
i1◦a1←−−− M21

o2◦a2−−−→ O2) is a DPO- (and thus SqPO-) admissible match
of r1 into r2.

(iii) r1 and r2 are sequentially independent w.r.t. µ12 in both types of rewriting, and with
(r2

µ21/SqPOr1) ∼= (r2
µ21/DPOr1) ∼= (r1

µ12/DPOr2) ∼= (r1
µ12/SqPOr2) . (54)

(iv) R1 and R2 are sequentially independent only if in addition cI21 ≡ cI12 .
Proof: Let K21 denote the pullback of K2 ↪→ N21 ←↩ K1, and let the square marked
t in (55) below be a pushout complement (POC) for T = DPO, and a �nal pullback
complement (FPC) for T = SqPO, respectively.
Ad (i) and (ii): By assumption, there exist monomorphisms O1 ↪→ K2 and I2 ↪→ K1.

This entails by virtue of the universal property of pullbacks the following structures
(compare (55)):
• Commutativity of the diagram and existence of the monomorphisms K1 ←↩ K1

and (K2 ←↩ O1) ◦ (O1 ←↩ K1) entail by the universal property of the pullback
�(K21,K1, N21,K2) the existence of a morphism K21 ← K1. Since (K1 ←↩ K1) =
(K21 ←↩ K21) ◦ (K21 ← K1), with ←↩ indicating monomorphisms, by stability of
monomorphisms under decompositions we conclude that (K21 ← K1) is amonomor-
phism. In an analogous fashion, the existence of monomorphisms K2 ↪→ K2 and
M21 ↪→ Ki (for i = 1, 2). This proves part (i).

• Invoking pushout-pullbackdecomposition (cf. e.g. [16]) repeatedly (noting that POCs
and FPCs along monomorphisms are also pullbacks), we may conclude that the
squares marked t and PB in (55) are pushouts, as are all squares formed involving
the monomorphisms previously discussed to exist (i.e. the morphisms marked in
light blue in (55)).
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M21 O1 K1 I1

I2 N21 K1 I21

K2 K2 K21

O2 O21

PO POC PO

t PB

PO

 

M21 O1 K1 I1

I2 N21 K1 I21

K2 K2 K21 K2

O2 O21 K1 N12

PO POC PO

t PB

PO PO

 

M21 O1 K1 I1 M21

I2 N21 K1 I21 I2

K2 K2 K21 K2 K2

O2 O21 K1 N12 O2

M21 O1 K1 I1 M21

PO POC PO PO

t PB PO

PO PO PO

PO PO PO PO

(55)

From hereon, we may follow the classical strategy for proving sequential commuta-
tivity in the DPO-type setting (cf. e.g. [36], proof of Thm. 5.12): �rst, we form the
pushouts K2 = PO(K21 ←↩ K1 ↪→ I1), K1 := PO(O2 ←↩ K2 ↪→ K21) and N12 := PO(K1 ←↩
K21 ↪→ K2), which by universal properties of pushouts and stability of monomor-
phisms under decompositions leads to the existence of monomorphisms K2 ↪→ I21

and K1 ↪→ O21. Since moreover by virtue of pushout-pushout decomposition the newly
formed squares involving the two aforementioned monomorphisms are found to be
pushouts, we �nally obtain a DPO-type composition of r1 with r2 along the span µ21

by assembling pushout squares as depicted in the last step of (55). This identi�es the
span µ12 := (I1 ←↩ M21 ↪→ O2) as a DPO- (and thus SqPO-) admissible match of r1 into
r2, which proves part (ii).
Ad (iii): Since we have found in the proof of part (i) that the square marked t

in (55) is a pushout whenever the monomorphisms O1 ↪→ K2 and I2 ↪→ K1 exist, note
�rst that sequential compositions of rules r2 and r1 along a T-admissible match µ21

that are sequentially independent are in fact always DPO-type compositions (which
for T = SqPO is indeed a possible special case, since a pushout complement is also an
FPC). Together with the construction of the DPO-type composition of r1 and r2 along
the uniquely induced span µ12 as presented in the proof of part (ii), which in particular
entails the existence of monomorphisms O2 ↪→ K1 and I1 ↪→ K2, this provides the proof
of part (iii).
Ad (iv): The �nal claim follows by verifying the well-known fact that there is

no guarantee for the conditions cI21 and cI12 of the two composites to coincide, thus
concluding the proof. �

Note that the above statements have the peculiar consequence that two sequentially
independent rules r2 and r1 give rise to a so-called amalgamated rule [22], in the sense
that

O21 = PO(O2 ←↩ M21 ↪→ O1)

K21 = PO(K2 ←↩ M21 ↪→ K1)

I21 = PO(I2 ←↩ M21 ↪→ I1) .

(56)

Since the theory of amalgamation has been extensively developed in the graph rewrit-
ing literature [22, 38, 41, 43], it might well be the case that the above result may be
bene�cial in the concrete implementations of tracelet analysis algorithms.
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B.1 A worked example of tracelet shift equivalence

In order to provide some intuitions for the notion of tracelet shift equivalence, we
present in Figure 4 a concrete example of two tracelets of length 3 that are shift equiva-
lent. The bottom half of the diagram coincides with the bottom half of Figure 1b, while
the top half of Figure 4 encodes a tracelet where the order of applications of the sec-
ond and third rules has in e�ect been reversed. Note in particular that while the rules
involved are understood as rewriting rules for �nite directed (unlabeled) multigraphs,
we have employed vertex symbols and edge colors in order to encode the structure
of the various monomorphisms and partial maps (i.e. repeated symbols encode el-
ements related by partial maps). We have moreover chosen representatives for the
two tracelets such that the isomorphisms that relate the tracelets are concretely im-
plemented by isomorphisms of the underlying rewriting rules. An essential feature
of our de�nition of shift equivalence (De�nition 5) is the following technical detail:
for tracelets T = tn| . . . |t1 and T ′ = t′n| . . . |t′1 that are shift equivalent based upon sub-
tracelets tj | . . . |tj−k and t′j | . . . |t′j−k, part of the de�nition entails that we demand the
existence of an isomorphism between tn| . . . |t(j|...|j−k)| . . . |t1 and t′n| . . . |t′(j|...|j−k)| . . . |t′1.
However, we do not demand an isomorphism between the original tracelets T and T ′,
which would only exist in the special case where the subtracelets encode sequentially
independent derivations in the traditional sense. This feature is illustrated explicitly
in Figure 4, where the minimal derivation traces encoded by the two tracelets of length
3 are in fact not in isomorphism (due to the non-existence of an isomorphism of the
“X-shaped” respective third objects in the minimal traces that would be compatible
with the morphism structure of the traces), but only the minimal derivation traces of
the tracelets of length 2 given by t(3|2)|t1 and t′(3|2)|t′1, respectively. Here, the tracelet
T ′(3|2) of length 2 that leads to t′(3|2) is depicted in the light blue box, while T(3|2) leading
to t(3|2) is depicted in the light yellow box. It is this particular feature that deserves to
refer to the process of abstracting tracelets by means of tracelet shift equivalence as a
form of strong compression in the sense of [35].
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Figure 4: Illustration of a concrete example of tracelet shift equivalence, based upon the tracelet of length 3
as presented in Figure 1. The bottom half of the diagram is identical to the bottom half of Figure 1b, while
the top half illustrates a shift-equivalent tracelet of length 3 in which the order of the second and third rule
applications has been swapped.
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